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Introduction

Introduction

In this talk, E will denote a Hilbert space

I S(E ) denote the real Banach space of bounded, linear,
self-adjoint operators over E

I P(E ) ⊆ S(E ) denotes the cone of invertible positive definite
and P̂(E ) the cone of positive (semi-definite) operators

S and P are partially ordered cones with the positive definite, also
called Loewner order:

A ≤ B iff B − A is positive semidefinite, i.e.

v∗(B − A)v ≥ 0 for all v ∈ E
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The Riemannian geometry of positive definite matrices
Assume that E is finite dimensional. Then P(E ) has a Riemannian
structure with tangent space S(E ):

〈X ,Y 〉A = Tr
{
A−1XA−1Y

}
,

d2(A,B) = 〈logA(B), logA(B)〉A = Tr
{

log2(A−1/2BA−1/2)
}
,

expA(X ) = A1/2 exp(A−1/2XA−1/2)A1/2,

logA(B) = A1/2 log(A−1/2BA−1/2)A1/2

for X ∈ S(E ), A,B ∈ P(E ).

Theorem
The space (P(E ), d) is an NPC or CAT(0)-space, i.e. for each pair
A,B ∈ P(E ) there exists a unique Z ∈ P(E ), s.t. for all X ∈ P(E )

d2(X ,Z ) ≤ 1

2
d2(X ,A) +

1

2
d2(X ,B)− 1

4
d2(A,B).
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Moreover in the above Z = A#B, i.e. the geometric mean is the
unique midpoint. Thus distance minimizing curves (geodesics)
γ : [0, 1] 7→ P(E ) are unique between any pair A,B ∈ P(E ) and the
NPC-inequality extends to the whole curve

d2(X , γ(t)) ≤ (1− t)d2(X ,A) + td2(X ,B)− t(1− t)d2(A,B)

where γ(t) = A#tB := A1/2
(
A−1/2BA−1/2

)t
A1/2 for t ∈ [0, 1].

The map A#tB is called the weighted geometric mean. Thus
points of the curve A#tB admit the characterization

A#tB = argmin
X∈P

(1− t)d2(X ,A) + td2(X ,B).

By Kubo-Ando A#tB is monotone in the A,B ∈ P̂(E ) variables.
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The multivariable geometric or Karcher mean
ω = (w1, . . . ,wn) ∈ ∆n probability vector, wi > 0,

∑n
i=1 wi = 1,

A = (A1, . . . ,An), Ai ∈ P

Λ(ω;A) := argmin
X∈P

n∑
i=1

wid
2(X ,Ai )

Moakher 2005, SIMAX:

I X 7→ d2(X ,A) is a strictly geodesically convex function by the
NPC property

I Λ(ω;A) is the unique solution of the (Riemannian) gradient
equation called the Karcher equation:

∇C (X ) = −2
n∑

i=1

wi logX (Ai ) = 0

where C (X ) =
∑n

i=1 wid
2(X ,Ai ).
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Sturm’s law of large numbers

Theorem (Sturm 2002, Annals of Prob.)

Let (X , d) be a CAT (0)-space and let P2(X ) denote the set of all
probability measures µ s.t.

∫
X d2(x , a)dµ(a) <∞. Let a#tb

denote the unique geodesic between a, b ∈ X . Then for µ ∈ P2(X )

Λ(µ) := argmin
x∈X

∫
X
d2(x , a)dµ(a)

exists and is unique. Moreover consider an i.i.d. sequence of
random variables {Yi}i∈N with law µ and define

S1 := Y1,

Sk+1 := Sk# 1
k+1

Yk+1.

Then Sk converges to Λ(µ) almost surely, if supp(µ) is bounded.
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Theorem (Wasserstein contraction property, Sturm 2002)

Moreover

d(Λ(µ),Λ(ν)) ≤W1(µ, ν) := inf
γ∈Π(µ,ν)

∫
X×X

d(a, b)dγ(a, b)

where Π(µ, ν) denotes the set of all Borel probability measures on
X × X with marginals µ and ν.

Since the geometric mean A#tB is monotone in (A,B), Sturm’s
result implies:

Theorem (Lawson-Lim 2011; Bhatia-Karandikar 2012, Math.
Ann.)

For a fixed ω = (w1, . . . ,wn) ∈ ∆n the map Λ(ω, ·) is monotone,
i.e. for Ai ,Bi ∈ P(E ), 1 ≤ i ≤ n with Ai ≤ Bi we have

Λ(ω,A) ≤ Λ(ω,B).
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Nodice theorem for the Karcher mean
There is a deterministic version of Sturm’s law of large numbers,
first established for P(E ) by (Holbrook 2012, J. Ramanujan M. S.):

Theorem (Lim-Pálfia 2014, Bull. LMS)

Let (X , d) be a CAT (0)-space and let µ :=
∑n−1

i=0
1
nδai with

ai ∈ X . Consider the deterministic sequence {Sk}k∈N defined as
the inductive sequence of geometric means

S1 := a0,

Sk+1 := Sk# 1
k+1

ak

where k := k mod (n). Then Sk → Λ(µ) with rate
d(Sk ,Λ(µ)) = O(1/k).

The above along with Sturm’s slln even generalizes to CAT(κ)
spaces (Ohta-Pálfia 2015, Yokota 2018, Calc. Var. PDE).
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The infinite dimensional case of positive operators

In the case of dim(E ) = +∞, we no longer have Riemannian
structure, so the manifold P(E ) cannot be a CAT (0)-space. Thus
the Karcher mean Λ is not known to admit a definition as a unique
solution of an optimization problem. However we still have the
corresponding gradient equation called the Karcher equation:

n∑
i=1

wi logX (Ai ) = 0

for a probability vector ω ∈ ∆n and operators Ai ∈ P(E ) for
1 ≤ i ≤ n.
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Thompson’s part metric
For A,B ∈ P(E ) let d∞(A,B) := ‖ log(A−1/2BA−1/2)‖.
Theorem (Thompson 1963, Proc. AMS)

The space (P(E ), d∞) is a complete metric space and
d∞(A,B) = log max{M(A \ B),M(B \ A)} where
M(A \ B) := inf{β > 0 : B ≤ βA}.

Lemma (Lim-Pálfia 2012, JFA)

The map f : P(E ) 7→ P(E ) defined as

f (X ) :=
n∑

i=1

wiX#tAi

is a strict contraction in (P(E ), d∞) for t ∈ (0, 1] and ω ∈ ∆n and
operators Ai ∈ P(E ) for 1 ≤ i ≤ n. That is
d∞(f (X ), f (Y )) ≤ (1− t)d∞(X ,Y ).
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The power means

By Banach fixed point theorem and some calculation:

Theorem (Lim-Pálfia 2012, JFA and Lawson-Lim 2012, Trans.
AMS)

For t ∈ [−1, 1], t 6= 0 and ω ∈ ∆n and operators Ai ∈ P(E ) for
1 ≤ i ≤ n, the nonlinear operator equation

n∑
i=1

wiX#tAi = X

has a unique solution in P(E ) called the t-power mean Pt(ω;A)
which is monotone in A. Moreover Pt is also monotone in t, thus
{Pt(ω;A)}t∈(0,1] is a decreasing net, it has a greatest lower bound
Λ(ω,A), and the strong operator limt→0+ Pt(ω;A) = Λ(ω,A).



Sturm’s law of large numbers for the L1-Karcher mean of positive operators

The power means

The power means
The implicit function theorem with some trick implies:

Theorem (Lim-Pálfia 2012, JFA and Lawson-Lim 2012, Trans.
AMS)

The strong operator limt→0+ Pt(ω;A) = Λ(ω,A) is the unique
solution of the Karcher equation

n∑
i=1

wi logX (Ai ) = 0

for X ∈ P(E ) and it is monotone in the second variable, i.e. if
Ai ≤ Bi for 1 ≤ i ≤ n and Ai ,Bi ∈ P(E ), then Λ(ω,A) ≤ Λ(ω,B).

If all Ai mutually commute for 1 ≤ i ≤ n, then

Pt(ω;A) =

(
n∑

i=1

wiA
t
i

)1/t

.
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The infinite dimensional L1-Karcher mean
Let P1(P(E )) denote the τ -additive Borel probability measures on
(P(E ), d∞) s.t.

∫
P(E) d∞(X ,A)dµ(A) <∞ for X ∈ P(E ). Note

that τ -additive is equivalent to µ(supp(µ)) = 1. Using the
W1-density of finitely supported probability measures in P1(P(E )):

Theorem (Lim-Pálfia 2017, Lawson 2018)

For all µ ∈ P1(P(E )) there exists a unique solution of∫
P(E)

logX (A)dµ(A) = 0

denoted by Λ(µ), which satisfies

d∞(Λ(µ),Λ(ν)) ≤W1(µ, ν)

for all ν ∈ P1(P(E )).
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The stochastic partial order for P1(P(E ))

Definition (Kim-Lee 2015, LAA and Lawson 2017, JMAA)

A set U ⊆ P(E ) is upper if for an X ∈ P(E ) there exists an Y ∈ U
such that Y ≤ X , then X ∈ U. Then the stochastic order for
µ, ν ∈ P1(P(E )) is defined as µ ≤ ν if µ(U) ≤ ν(U) for all upper
sets U ⊆ P(E ).

The stochastic order extends the usual positive definite order:

Proposition (Kim 2017, Taiwanese J. Math.)

Let µ :=
∑n

i=1
1
nδAi

, ν :=
∑n

i=1
1
nδBi

∈ P1(P(E )). Then µ ≤ ν iff
Ai ≤ Bi for all 1 ≤ i ≤ n.

Corollary

The L1-Karcher mean is monotone with respect to the stochastic
order.
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Resolvent maps induced by the Karcher mean

Definition (Resolvent operator)

Given µ ∈ P1(P(E )) we define the resolvent operator for λ > 0
and X ∈ P(E ) as

Jµλ (X ) := Λ

(
λ

λ+ 1
µ+

1

λ+ 1
δX

)
,

the solution of

λ

λ+ 1

∫
P(E)

logZ Adµ(A) +
1

λ+ 1
logZ (X ) = 0

we obtained for Z ∈ P(E ) in the previous theorem.

Note: if dim(E ) <∞ then
Jµλ (X ) = argminY∈P(E)

∫
P(E) d

2(A,Y )dµ(A) + 1
λd

2(Y ,X ).
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Proposition (Lim-Pálfia 2017)

Let µ ∈ P1(P), for τ > λ > 0, λi > 0 and X ,Y ∈ P. Then we
have

1. (Resolvent contraction)

d∞(Jµλ (X ), Jµλ (Y )) ≤ 1

1 + λ
d∞(X ,Y ).

2. (Resolvent identity)

Jµτ (X ) = Jµλ

(
Jµτ (X )#λ

τ
X
)
.

3. (Whatever inequality)

d∞
(
Jµλ1
◦ · · · ◦ Jµλn(X ),X

)
≤

n∑
i=1

λi
1 + λi

∫
P
d∞(X ,A)dµ(A).
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A key metric inequality for resolvent iterates

Theorem (Lim-Pálfia 2017 & 2019)

Let {ti}i∈N, {t̂j}j∈N denote sequences such that ti , t̂j ∈ [0,∞) and
ti+1 > ti , t̂j+1 > t̂j . Let X ∈ P and µ ∈ P1(P) and τi := ti − ti−1,

τ̂i := t̂i − t̂i−1. Let X0 = X̂0 = X and define Xi+1 := Jµτi+1(Xi ) and

X̂i+1 := Jµτ̂i+1
(X̂i ). Let m, n ∈ N. Then

d∞(Xm, X̂n) ≤

min{m,n}∏
j=1

(1 + min{τj , τ̂j})−1


×
[
(tm − t̂n)2 + σm + σ̂n

]1/2
C

where σm =
∑m

i=1(ti − ti−1)2, σ̂n =
∑n

i=1(t̂i − t̂i−1)2 and
C =

∫
P d∞(X ,A)dµ(A).
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An ODE flow for the L1-Karcher mean

Theorem (Lim-Pálfia 2017)

For any X ,Y ∈ P(E ) and t > 0 the curve

S(t)X := lim
n→∞

(
Jµt/n

)n
(X )

exists where the limit is in the d∞-topology and it is
Lipschitz-continuous on compact time intervals [0,T ] for any
T > 0. Moreover it satisfies the exponential contraction property

d∞ (S(t)X , S(t)Y ) ≤ e−td∞(X ,Y ),

and for s > 0 verifies the semigroup property

S(t + s)X = S(t)(S(s)X ).
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An ODE flow for the L1-Karcher mean

Theorem (Lim-Pálfia 2017)

Let µ ∈ P1(P(E )) and X ∈ P(E ). Then for t > 0, the curve
X (t) := S(t)X provides a strong solution of the Cauchy problem

X (0) := X ,

Ẋ (t) =

∫
P

logX (t) Adµ(A),

where the derivative Ẋ (t) is the Fréchet-derivative.

The finite dimensional case follows from the theory of gradient
flows of semi-convex functions φ : M 7→ R in CAT(κ) spaces
(M, d) (Ohta-Pálfia 2017, Amer. J. Math.) with the resolvent
Jµλ (X ) := argminY∈M φ(Y ) + 1

2λd
2(Y ,X ).
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Continuous-time slln for the L1-Karcher mean

Theorem (Lim-Pálfia 2017)

Let µ ∈ P1(P(E )) and let {Yi}i∈N be a sequence of i.i.d.
P(E )-valued random variables with law µ. Let
µn :=

∑n
i=1

1
nδYi

∈ P1(P(E )) denote the empirical measures. Let
Sµ(t) and Sµn(t) denote the semigroups corresponding to the
resolvents Jµλ and Jµnλ for t > 0. Then

lim
n→∞

Sµn(t) = Sµ(t)

almost surely uniformly in d∞ on compact time intervals.

Moreover let Fµnρ := J
δYn
ρ/n ◦ · · · ◦ J

δY1

ρ/n where JδAρ (X ) = X# ρ
ρ+1

A.

Then
lim

m→∞
(Fµnt/m)m = Sµn(t)

uniformly in d∞ on compact time intervals for any n ∈ N.
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The idea behind: Approximating resolvents and semigroups

Lemma (Lim-Pálfia 2017)

Let F : P 7→ P be a nonexpansive map with respect to d∞. Let
λ, ρ > 0 and Y ∈ P. Then the map

Gλ,ρ,Y (X ) := Λ

(
1

1 + λ/ρ
δY +

λ/ρ

1 + λ/ρ
δF (X )

)
is a strict contraction with Lipschitz constant λ/ρ

1+λ/ρ < 1. Thus the

map Gλ,ρ,Y has a unique fixed point denoted by Jλ,ρ(Y ).

Theorem (Lim-Pálfia 2017)

Let F : P 7→ P be a nonexpansive map. Then for any X ,Y ∈ P
and t, ρ > 0 the curve

Sρ(t)X := lim
n→∞

(
Jt/n,ρ

)n
(X )
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Theorem (cont.)

exists where the limit is in the d∞-topology. It also satisfies the
contraction property

d∞ (Sρ(t)X ,Sρ(t)Y ) ≤ d∞(X ,Y ),

for s > 0 verifies the semigroup property

Sρ(t + s)X = Sρ(t)(Sρ(s)X ),

and the flow operator Sρ : P× (0,∞) 7→ P extends by
d∞-continuity to Sρ : P× [0,∞) 7→ P.
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Convergence of approximating resolvents

Theorem (Lim-Pálfia 2017)

Let µ =
∑n

i=1
1
nδAi

∈ P1(P). For ρ > 0 let Fρ := J
δAn
ρ/n ◦ · · · ◦ J

δA1

ρ/n.
In particular Fρ : P 7→ P is a contraction with respect to d∞. For
λ > 0 let Jλ,ρ denote the approximating resolvent of Fρ. Then

Jµλ (X ) = lim
ρ→0+

Jλ,ρ(X ) in norm, thus d∞.

Theorem (Trotter formula, Lim-Pálfia 2017)

For each ρ > 0 let Fρ : P 7→ P be a nonexpansive map and let Jλ,ρ
be its approximating resolvent. If limρ→0+ Jλ,ρ(X ) = Jµλ (X ) in d∞
for all X ∈ P, then

(F t
n
)n(X )→ S(t)X

in d∞ for all X ∈ P as n→∞, where S(t) is generated by Jµλ .
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Technical background and the Lawson-Lim conjecture
For µ ∈ P1(P) and X ∈ P let

φµ(X ) :=

∫
P

logX Adµ(A).

Proposition (Lim-Pálfia 2017)

Let µ ∈ P1(P(H)) and X ∈ P(H). Then the Fréchet derivative
Dφµ(Λ(µ)) : S(H) 7→ S(H) if exists, is a Banach space
isomorphism.

Theorem (Continuity of Pt , Lawson-Lim conjecture, Lim-Pálfia
2017)

Let µ ∈ P1(P) with
∫
P d

p
∞(X ,A)dµ(A) < +∞ for all p ≥ 1 and

X ∈ P. Then the family Pt(µ) is norm continuous in t ∈ [−1, 1],
in particular

Λ(µ) = lim
t→0

Pt(µ) in norm.
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Discrete-time flows for Λ
For µ :=

∑n
i=1

1
nδYi

∈ P1(P(E )) and Fµρ := J
δYn
ρ/n ◦ · · · ◦ J

δY1

ρ/n we
obtained

lim
m→∞

(Fµt/m)m = Sµ(t).

It’s similar to Holbrook’s nodice approximation...

Proposition (Resolvent iteration, Lim-Pálfia 2019)

Let µ ∈ P1(P), d ≥ 0 an integer and X ∈ P. Let X0 := X and
define Xk+1 := Jµ1/(k+d)(Xk) for k ∈ N. Then d∞(Xk ,Λ(µ))→ 0.

Proof.
Let tk :=

∑k
i=d+1

1
i and t̂j := j tnn for a fixed n ∈ N such that

bn/tnc ≥ d , so that τj = 1
j+d and τ̂ = τ̂j = tn

n for all 1 ≤ j ≤ n.
Let S(t) denote the semigroup generated by Jµ. Then

d∞(Xn,Λ(µ)) ≤ d∞(Xn,
(
Jµτ̂
)n

(X )) + d∞(
(
Jµτ̂
)n

(X ),S(tn)X )

+ d∞(S(tn)X ,Λ(µ)) ≤ O(1/ log(n)).
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Discrete-time flows: Nodice theorem for Λ

Theorem (Nodice, Lim-Pálfia 2019)

Let 1
n

∑n
i=1 δYi

=: µ ∈ P1(P) for a fixed integer n. Let S1 := Y1

and Sk+1 := Sk# 1
k+1

Yk+1, where k is defined to equal the residual

of k mod n and the 0 residual is identified with n. Then
Sk → Λ(µ) in d∞ with convergence rate at least O(1/ log(k)).

sketch of the proof.

Let 1 ≤ i ≤ n be arbitrary and N ∈ N such that
2
Nndiam(supp(µ)) < 1. Let k ≥ N be an integer. By definition

1

nk + i + 1
logSnk+i+1

Ynk+i+1 + logSnk+i+1
(Snk+i ) = 0.

By expanding log in the above, we get
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proof contd.

1

nk + i + 1
logSnk+i+1

Ynk+i+1 + Snk+i − Snk+i+1

+ O

(
4
diam(supp(µ))2

(nk + i + 1)2

)
ed∞(Y1,I )+2diam(supp(µ)) = 0.

Summing the above identity in 0 ≤ i ≤ n − 1, we get

Skn − S(k+1)n +
n−1∑
i=0

1

nk + i + 1
logSnk+i+1

Ynk+i+1

+ O

(
4
diam(supp(µ))2

(nk + i + 1)2

)
ed∞(A1,I )+2diam(supp(µ)) = 0.
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proof contd.
There exists an Sk ∈ P such that

1

k + 1

n∑
i=1

1

n
logSn(k+1)

Ynk+i + logSn(k+1)
Sk = 0 (∗)

and d∞(Snk ,Sk) ≤ O
(

1
k2

)
for all k ≥ N. In other words

Sn(k+1) = Jµ1
k+1

Sk . Now let Ŝk := SN for 1 ≤ k ≤ N, and

Ŝk+1 := Jµ1
k+1

Ŝk for k ≥ N recursively. Then

d∞(Sn(k+1), Ŝk+1) ≤ 1

1 + 1
k+1

d∞(Sk , Ŝk)

≤ 1

1 + 1
k+1

(
d∞(Skn, Ŝk) + d∞(Skn,Sk)

)
≤
(

1− 1

k + 2

)
d∞(Skn, Ŝk) + O

(
1

(k + 2)2

)
.
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proof contd.

It follows that d∞(Sn(k+1), Ŝk+1)→ 0. In particular, since

Ŝk → Λ(µ) the assertion is proved for the subsequence {Skn}k∈N.
The convergence of the rest follows from

d∞(Snk ,Skn+i ) ≤
i∑

j=0

2diam(supp(µ))

nk + j

≤ n
2diam(supp(µ))

nk

=
2diam(supp(µ))

k

valid for any 1 ≤ i ≤ n.
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Stochastic discrete-time flows: Sturm’s L1-slln

Theorem (Sturm’s L1-slln for Λ, Lim-Pálfia 2019)

Let µ ∈ P1(P) and let Yi be an i.i.d. sequence of random variables
with law µ. Let S1 := Y1 and Sk+1 := Sk# 1

k+1
Yk+1. Then

Sk → Λ(µ) a.s. in d∞.

idea of the proof.

The idea is that given an L1-random variable, some truncation of it
with finite/bounded support can be made arbitrarily close to it in
W 1 in a controlled manner. So then the metric convexity yields
that their inductive mean sequences are arbitrarily close to each
other a.s.:
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Stochastic discrete-time flows: some technicalities 1.

Lemma (Lim-Pálfia 2019)

Let ε > 0 and µ ∈ P1(P). Then there exists an R > 0 such that

lim sup
n→∞

d∞(Xn,X
R
n ) < ε

almost surely, where X1 := Y1, XR
1 := Y R

1 and recursively
Xn+1 := Xn# 1

n+1
Yn+1, XR

n+1 := XR
n # 1

n+1
Y R
n+1, where Yn is an i.i.d.

sequence of P-valued random variables with law µ and

Y R
n (ω) :=

{
Yn(ω), if d∞(Yn(ω),Λ(µ)) < R,
Λ(µ), if d∞(Yn(ω),Λ(µ)) ≥ R.

Thus, it suffices to show the assertion for r.v. with finite/bounded
support.
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Stochastic discrete-time flows: some technicalities 2.

Then, we combine a stochastic version of (∗) in the proof of the
Nodice theorem with the following lemmata.
I. Empirical measures are uniformly close in W1 a.s.:

Lemma (Lim-Pálfia 2019)

Let µ ∈ P1(P) and let Yn be a sequence of i.i.d. P-valued random
variables with law µ. Then for any ε > 0 there exists an N ∈ N
such that for any n ≥ N

EW1(µ, µn) < ε,

where µn ∈ P1(P) is a random measure defined as
µn :=

∑n
i=1

1
nδYi

.
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II. Diminishing step-size resolvent iterates with varying measures
close to a measure, remain close to each other:

Lemma (Lim-Pálfia 2019)

Let µ, νi ∈ P1(P) for i ∈ N, l ≥ 0 an integer and X0,Y0 ∈ P. Let

Xk+1 := Jµ1/(l+k+1)(Xk) and Yk+1 := J
νk+1

1/(l+k+1)(Yk).

Then

d∞(Xk+1,Yk+1) ≤ l + 1

k + l + 1
d∞(X0,Y0)+

k − l

k + l + 1

k+1∑
i=l+1

W1(µ, νi )

k − l
.

These are the main ingredients of the proof and a lot of technical
nonsense :)
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