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Introduction
In this talk, E will denote a Hilbert space
I S(E ) denote the space of self-adjoint operators
I P ⊆ S denotes the cone of invertible positive definite and P̂

the cone of positive semi-definite operators

S and P are partially ordered cones with the positive definite order:

A ≤ B iff B − A is positive semidefinite

Definition
A real function f : (0,∞) 7→ R is operator monotone, if A ≤ B
implies f (A) ≤ f (B) for A,B ∈ P(E ) and all E .

Some examples:
I x t for t ∈ [0, 1];
I log x ;
I x−1

log x .
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Loewner’s theorem

Theorem (Loewner 1934)

A real function f : (0,∞) 7→ R is operator monotone if and only if

f (x) = α + βx +

∫ ∞
0

λ

λ2 + 1
− 1

λ+ x
dµ(λ),

where α ∈ R, β ≥ 0 and µ is a unique non-negative measure on
[0,∞) such that

∫∞
0

1
λ2+1

dµ(λ) <∞; if and only if it has an

analytic continuation to the open upper complex half-plane H+,
mapping H+ to H+.

Many different proofs of Loewner’s theorem exist:

I Bendat-Sherman ’55, Hansen ’13, Hansen-Pedersen ’82,
Korányi-Nagy ’58, Sparr ’90, Wigner-von Neumann ’54, ...
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Free and matrix convex sets

A a Banach space, IA : A 7→ A denote the identity map.

Definition (Free set and matrix convex set)

A collection (D(E )) of sets of operators D(E ) ⊆ A⊗ B(E ) for
each Hilbert space E is a free set whenever for all Hilbert spaces
E ,K we have the following:

(1) (IA ⊗ U∗)D(E )(IA ⊗ U) ⊆ D(K ) for all unitary U : K 7→ E .

(2) D(E )⊕ D(K ) ⊆ D(E ⊕ K ).

If additionally (1) holds for any linear isometry U : K 7→ E , then
(D(E )) is a matrix convex set.
Sometimes the collection (D(E )) will be restricted to the case
dim(E ) <∞. In that case, for all other involved Hilbert spaces K
we assume dim(K ) <∞ as well.
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Free functions
Non-commutative polynomials of k operator variables suggest:

Definition (Free function)

Let L be a fixed Hilbert space. A collection of functions
F : D(E ) 7→ B(L ⊗ E ) indexed by E for a free set
D(E ) ⊆ A⊗ B(E ) defined for all Hilbert spaces E ,K is called a
free function whenever for all A ∈ D(E ) and B ∈ D(K ), we have

(1) unitary invariance, that is

F ((IA ⊗ U∗)A(IA ⊗ U)) = (IL ⊗ U∗)F (A)(IL ⊗ U)

holds for all unitaries U : E 7→ K ;

(2) direct sum invariance, that is

F (A⊕ B) = F (A)⊕ F (B).
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Operator monotone, concave functions

Definition (Operator monotonicity)

An free function F : D(E ) 7→ B(E ) is operator monotone if for all
X ,Y ∈ D(E ) s.t. X ≤ Y , we have

F (X ) ≤ F (Y ).

If this property is verified only (hence up to) dim(E ) = n, then F is
n-monotone. Example: Karcher mean, ALM, BMP, etc.

Definition (Operator concavity & convexity)

A free function F : D(E ) 7→ B(E ) is operator concave if for all
X ,Y ∈ D(E ) and λ ∈ [0, 1], we have

(1− λ)F (X ) + λF (Y ) ≤ F ((1− λ)X + λY )

Similarly we define n-concavity. Note: convexity of D(E ) is needed.
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Recent multivariable results

I For an operator convex free function F : Sk 7→ S that is
rational - hence already free analytic and defined for general
tuples of operators by virtue of non-commutative power series
expansion - Helton, McCullogh and Vinnikov in 2006, JFA
proved a representation formula, that is superficially similar to
our formula that we will obtain here later in full generality.

I For a real valued continuously differentiable locally monotone
function f : Rk 7→ R Agler, McCarthy and Young in 2012,
Ann. Math. proved a representation formula valid for pairwise
commuting tuples of operators. Using the formula they
obtained the analytic continuation of the restricted f to
(H+)k mapping (H+)k to H+.
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Recent multivariable results

I In JFA 2017, Pascoe and Tully-Doyle proved that a free
function F : Sk 7→ S that is free analytic, i.e. has a
non-commutative power series expansion, thus already defined
for general tuples of operators, is operator monotone if and
only if it maps the upper operator poly-halfspace Π(E )k to
Π(E ) for all finite dimensional E , where
Π(E ) := {X ∈ B(E ) : X−X∗

2i > 0}.
I Recently in LAA 2018, Pascoe provided an alternative

argument using the Agler-McCarthy-Young theorem leading to
analytic continuation, which has been relaxed in 2019 by
Pascoe and Tully-Doyle using the original Loewner theorem.

Note: matrix convexity of (D(E )) is crucial in the above results,
except in Agler-McCarthy-Young.
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Motivation of non-matrix convex domains through means
In 2012 P-Lim introduced the matrix power means as
non-commutative operator monotone lifts of the power means

Pp(ω;A) :=

(
k∑

i=1

wiA
p
i

)1/p

of positive definite commuting k-tuples A = (A1, . . . ,Ak), a
probability vector ω and p ∈ [−1, 1]. The idea is to consider the
unique positive definite solution X =: Pp(ω;A) of

k∑
i=1

wiX#pAi = X .

Pp(ω; ·) is operator monotone and as p → 0, it converges to the
multivariable geometric (Karcher) mean Λ(ω; ·).
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A characterization of concavity

Proposition (P 2020)

Let (D(E )) with D(E ) ⊆ A⊗ B(E ) denote a self-adjoint matrix
convex set and let F : D(E ) 7→ B(E ) be a free function. Then F is
operator concave if and only if for each isometry W : E 7→ K and
X ∈ D(K ) we have

F ((IA ⊗W ∗)X (IA ⊗W )) ≥W ∗F (X )W .

Corollary (P 2020)

Under the above assumptions if also 0 ∈ D(C) and F (0) ≥ 0, then
the equivalence remains true with contractions W : E 7→ K .
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Given a disjoint union of sets (C (E ) ⊆ A⊗ B(E )) for each Hilbert
space E closed under direct sums, its matrix convex hull is given as

comatC (E ) :=
⋃
K

{V ∗XV : X ∈ C (K ),V : E 7→ K an isometry}.

If 0 ∈ C (C) then we also have

comatC (E ) =
⋃
K

{V ∗XV : X ∈ C (K ),V : E 7→ K , ‖V ‖ ≤ 1}.

Given a collection of sets (D(E ) ⊆ A⊗ B(E )) closed under direct
sums and a collection of functions F : D(E ) 7→ B(E ) preserving
direct sums, we consider its hypograph

hypo(F ) := (hypo(F )(E )) := ({(Y ,X ) ∈ B(E )×D(E ) : Y ≤ f (X )}).
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A characterization of partial concavity

Proposition (P 2020)

Let a collection of self-adjoint sets (D(E ) ⊆ A⊗ B(E )) closed
under direct sums and a collection of functions F : D(E ) 7→ B(E )
preserving direct sums be given. Then for each isometry
W : E 7→ K and X ∈ D(K ) such that
(IA ⊗W ∗)X (IA ⊗W ) ∈ D(E ) we have that

F ((IA ⊗W ∗)X (IA ⊗W )) ≥W ∗F (X )W ,

if and only if for each (Y ,X ) ∈ comat(hypo(F ))(E ) with
X ∈ D(E ) we have that Y ≤ F (X ).
Moreover if 0 ∈ D(C) and F (0) ≥ 0 then the statement holds with
contractions W : E 7→ K .
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Supporting pencils of hypographs

Proposition (P 2020)

Let (D(E )) 3 0 and F be as before with F |D > 0. Assume that
comat(D)(E ) has nonempty interior for each E . Let N be a Hilbert
space. Then for each interior point A ∈ D(N) and each unit vector
v ∈ N there exists a completely bounded affine linear map
LF ,A,v : (B(E ),A⊗ B(E )) 7→ B(N)∗ ⊗ B(E ) given as

LF ,A,v (Y ,X ) := T (F ,A, v)⊗ IE − vv∗ ⊗ Y + ΛF ,A,v (X ),

where 0 ≤ T (F ,A, v) ∈ B(N)∗ and ΛF ,A,v : A 7→ B(N)∗ is a
self-adjoint completely bounded linear map, such that

(a) T (F ,A, v)(IN) = v∗F (A)v − ΛF ,A,v (A) and there exists ε > 0
such that (1 + ε)A ∈ comat(D)(N) and

−ΛF ,A,v (A) ≤ v∗F (A)v−v∗F ((1+ε)A)v
ε ;



Analytic lifts of operator monotone and concave functions

Supporting pencils of hypographs

(b) For all (Y ,X ) ∈ hypo(F ) we have LF ,A,v (Y ,X ) ≥ 0;

(c) γ∗LF ,A,v (F (A),A)γ = 0 where γ = IN ;

(d) For every X in the interior of comat(D)(E ) there exists an
ε > 0 such that 〈V , LF ,A,v (0,X )V 〉 ≥ εT (F ,A, v)(V ∗V ).

Let (D(E )) 3 0 be as above. Then for a Hilbert space E and a
dense set E0 ∈ {x ∈ E : ‖x‖ = 1} define the auxiliary vector space

HE ,0 :=
⊕

(X ,v)∈(D(E),E0)

E

and its completion HE with respect to the usual inherited direct
sum inner product. We denote by I(X ,v) ∈ B(HE ,E ) the isometry
that equals to IE − vv∗ on the (X , v) slot and 0 elsewhere.
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A representation formula

Corollary (P 2020)

Let (D(E )) 3 0 and F be as above with F |D > 0. Fix a Hilbert
space E and an η > 0. Assume that comat(D)(E ) has nonempty
interior for E . Then there exists a vector e ∈ HE with ‖e‖ = 1, a
completely bounded affine map LF : A⊗ B(E ) 7→ B(HE )∗ ⊗ B(E )
given as

LF (X ) := TF ⊗ IE + ΛF (X ),

where 0 ≤ TF ∈ B(HE )∗ and ΛF : A 7→ B(HE )∗ is self-adjoint
completely absolutely continuous with respect to TF , such that

(a) For all X ∈ comat(D)(E ) we have LF (X ) ≥ 0;

(b) For all (1 + η)X ∈ D(E ) in the interior of comat(D)(E ),
W ∈ B(HE ,E )TF

and v ∈ E we have〈
W , LF (X )(I(X ,v) + ve∗)

〉
TF

= e∗W ∗F (X )v .
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Let Z ≥ 0 and S a subspace. Let Z =

[
Z11 Z12

Z21 Z22

]
with

Z11 : S 7→ S , Z21 : S 7→ S⊥. Then ran(Z21) ⊂ ran(Z22)1/2 and
∃C : S 7→ S⊥ such that Z21 = (Z22)1/2C and

Z =

[
Z11 − C ∗C 0

0 0

]
+

[
C ∗ 0

(Z22)1/2 0

] [
C (Z22)1/2

0 0

]
.

Then SS(Z ) := Z11 − C ∗C is maximal among X : S 7→ S ,X ≤ Z .

Theorem (P 2020)

Let (D(E )) 3 0 and F be as above with F |D > 0. Fix E . Assume
that comat(D)(E ) has nonempty interior for E . Then for each
X ∈ D(E ) in the interior of comat(D)(E ) we have

F (X ) = (e ⊗ IE )Se∗⊗E (LF (X ))(e∗ ⊗ IE ).

Moreover the RHS is well defined for each interior point
X ∈ comat(D)(E ).
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Theorem (P 2020)

Let H a Hilbert space and e ∈ H with ‖e‖ = 1 be fixed. Let a
completely bounded affine map L : A⊗ B(E ) 7→ B(H)∗ ⊗ B(E ) be
given as

L(X ) := T ⊗ IE + Λ(X ),

where 0 ≤ T ∈ B(H)∗ and Λ : A 7→ B(H)∗ is a self-adjoint
completely bounded linear map that is completely absolutely
continuous with respect to T . Then the function

F (X ) := (e ⊗ IE )Se∗⊗E (L(X ))(e∗ ⊗ IE )

is well defined and analytic for each
X ∈ {Y ∈ A⊗ B(E ) : L(<(Y )) > 0} and satisfies the assumptions
of the above with D(E ) := {Y ∈ A⊗ B(E ) : L(Y ) ≥ 0}.
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Free lifting of globally operator monotone functions
Let CP(E )k denote the set of pairwise commuting k-tuples of
positive operators on E . A real function f : (0,∞)k 7→ (0,∞) has
a natural functional calculus on CP(E )k for dim(E ) <∞ defined
as f (X ) := U∗f (Λ)U where X = U∗ΛU denotes the joint spectral
decomposition of X ∈ CP(E )k and
f (Λ) :=

⊕k
i=1 f ({Λ1}ii , . . . , {Λk}ii ). We also have

comatCPk(E ) = Pk(E ) for each dim(E ) <∞.

Definition
A real function f : P(C)k 7→ P(C) is said to be (globally) operator
monotone, if for any X ≤ Y ∈ CP(E )k , dim(E ) < +∞ we have
f (X ) ≤ f (Y ).

Problem
Is every real globally operator monotone function admit an analytic
continuation to P(E )k or a global formula?
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Proposition (P 2020)

Let f : P(C)k 7→ P(C) be a (globally) operator monotone function.
Then for any isometry W : E 7→ K between finite dimensional
Hilbert spaces E ,K and any X ∈ CP(K )k such that
W ∗XW ∈ CP(E )k we have

W ∗f (X )W ≤ f (W ∗XW ).

In particular f is concave and continuous as a real function.

Theorem (P 2020)

Let f : P(C)k 7→ P(C) be a real function. Then f is (globally)
operator monotone if and only if for each
(Y ,X ) ∈ comat(hypo(f )(E )) with dim(E ) < +∞ and
X ∈ CP(E )k , we have that Y ≤ f (X ).

Thus, we can follow the earlier arguments, obtaining analytic
shorted operator based formulas!
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Operator means of probability measures

Let P(P(E )) denote the set of fully supported Borel probability
measures on the complete metric space (P(E ), d∞) where E is a
Hilbert space and d∞(A,B) = ‖ log(A−1/2BA−1/2)‖ denotes the
Thompson metric. Let P∞(P(E )) ⊂ P(P(E )) denote the subset of
probability measures with bounded support. For a µ ∈ P(P(E ))
the support supp(µ) is a separable closed subset of P(E ) and it
has full measure µ(supp(µ)) = 1.
A set U ⊆ P(E ) is upper if X ≤ Y ∈ P(E ) and X ∈ U imply that
Y ∈ U.

Definition (Stochastic order)

For µ, ν ∈ P(P(E )) the stochastic partial order µ ≤ ν is defined by
requiring µ(U) ≤ ν(U) for all closed upper sets U ⊆ P(E ).

Idea: utilize the Skorokhod representation
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Stochastic order of probability measures

Theorem (Strassen 1965)

Let µ, ν ∈ P∞(P(E )). Then the following are equivalent:

(i) µ ≤ ν;

(ii) there exists ξµ : [0, 1] 7→ supp(µ) and ξν : [0, 1] 7→ supp(ν)
such that µ = (ξµ)∗λ and ν = (ξν)∗λ with ξµ(t) ≤ ξν(t)
almost surely for all t ∈ [0, 1].

Proposition (P 2020)

The collection of sets (P∞(P(E ))) indexed by E is a self-adjoint
matrix convex set. In particular P∞(P(E )) embeds into
L∞([0, 1], λ)+ ⊗ P(E ), the strictly positive cone of the projective
tensor product L∞([0, 1], λ)⊗ B(E ).

Nuclearity ensures that all C ∗-cross norms on
(L∞([0, 1], λ)+ ⊗ P(E )) are equivalent.
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Definition (Direct sums of probability measures)

For µ ∈ P∞(P(E )), ν ∈ P∞(P(K )), let Γ(µ, ν) ⊆ P∞(P(E ⊕ K ))
denote the set of couplings of µ, ν, that is γ ∈ Γ(µ, ν) if
γ(A× P(K )) = µ(A) and γ(P(E )× B) = ν(B). Then µ⊕ ν is
defined to be the set Γ(µ, ν). Thus in general, the direct sum of
probability measures is no longer uniquely determined.

Notice that Γ(µ, ν) is nonempty, since µ× ν ∈ Γ(µ, ν).

Definition (Operator mean of discrete probability measures)

For each 0 < n ∈ N and E let Fn : P(E )n 7→ P(E ) be an operator
monotone free function. Then F = {Fn} is an operator mean if

1) For a permutation σ ∈ Sn,
Fn(X1, . . . ,Xn) = Fn(Xσ(1), . . . ,Xσ(n));

2) For 0 < k ∈ N,
Fnk(X1, . . . ,X1︸ ︷︷ ︸

k times

, . . . ,Xn, . . . ,Xn︸ ︷︷ ︸
k times

) = Fn(X1, . . . ,Xn).
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Proposition (P 2020)

An operator mean Fn : P(E )n 7→ P(E ) preserves direct sums of
discrete probability measures with rational weights.

In order to study operator means of general probability measures
F : P∞(P(E )) 7→ P(E ), we consider first free functions of random
variables, that is F : (L1([0, 1], λ)+ ⊗ P(E )) 7→ P(E ). Let
S([0, 1], λ) denote the set of simple functions on [0, 1]. Then
S([0, 1], λ) is norm-dense in Lp([0, 1], λ) for 1 ≤ p ≤ +∞ and the
same is true for S([0, 1], λ)+ ⊗ P(E ) in Lp([0, 1], λ)+ ⊗ P(E ).

Theorem (P 2020)

Assume that F : S([0, 1], λ)+ ⊗ P(E ) 7→ P(E ) is free operator
concave function. Then for each 1 ≤ p ≤ +∞ there exists a
unique F̂p : Lp([0, 1], λ)+ ⊗ P(E ) 7→ P(E ) extending F .
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Extension and representation theorems for operator means

Theorem (P 2020)

Assume that the sequence of functions Fn : P(E )n 7→ P(E ) for
0 < n ∈ N is an operator mean of discrete probability measures.
Then it uniquely extends into a stochastic order preserving
function F̂ : P∞(P(E )) 7→ P(E ).

Corollary (P 2020)

Let F : P∞(P(E )) 7→ P(E ) be a stochastic order preserving free
function. Then there exists an operator monotone free function
F̂ : L∞([0, 1], λ)+ ⊗ P(E ) 7→ P(E ) that represents F and F̂ (X + I )
is given by the shorted operator formula where
0 ≤ λ ∈ (L∞([0, 1], λ)⊗ B(HE ))∗ and I (t) := IE for all t ∈ [0, 1].
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Blecher’s real operator monotonicity
For a free function F : D(E ) 7→ B(L ⊗ E ) we define real operator
monotonicity of F as: A ≤Re B implies F (A) ≤Re F (B), where
0 ≤Re X means 0 ≤ <X = X+X∗

2 . Note:≤Re is just a preorder.

Theorem (Gaál & P 2020)

Let the domain (D(E )) be open. Then F is real operator
monotone if and only if

F (<X ,=X ) = G (<X ) + iH(<X ,=X )

where H : <D(E )×=D(E ) 7→ S(E ) is a free function and
G : <D(E ) 7→ S(E ) is an operator monotone free function.

Assume further that for all invertible S ∈ B(E ,K )

(1’) F ((S−1 ⊗ IA)A(S ⊗ IA)) = (IB(L) ⊗ S−1)F (A)(IB(L) ⊗ S).

Note that: (1’), (2) + local boundedness is equivalent to that F is
free holomorphic! Then:
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Theorem (Real monotone Loewner’s theorem, Gaál & P 2020)

Let F : D(E ) 7→ B(L⊗ E ) be a free holomorphic function. Then F
is real operator monotone if and only if

F (X ) = C ⊗ I + φ(X )

where C ∈ B(L) and φ : A 7→ B(L) is completely positive linear.

Corollary (Gaál & P 2020)

Given a free set (D(E )), let F : D(E )→ B(E ) be a free
holomorphic function where each D(E ) ⊆ B(E )k is open. Then F
is real operator monotone if and only if

F (X ) = a0 ⊗ I +
k∑

j=1

aj ⊗ Xj

where aj ∈ C, with aj ≥ 0 for j ∈ {1, . . . , k}.
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