Miklós Pálfia

Sungkyunkwan University & University of Szeged

October 21, 2020

palfia.miklos@aut.bme.hu

Introduction

In this talk, E will denote a Hilbert space

- ▶ S(E) denote the space of self-adjoint operators
- ▶ P ⊆ S denotes the cone of invertible positive definite and P
 the cone of positive semi-definite operators

 $\mathbb S$ and $\mathbb P$ are partially ordered cones with the positive definite order:

 $A \leq B$ iff B - A is positive semidefinite

Definition

A real function $f : (0, \infty) \mapsto \mathbb{R}$ is operator monotone, if $A \leq B$ implies $f(A) \leq f(B)$ for $A, B \in \mathbb{P}(E)$ and all E. Some examples:

• x^t for $t \in [0, 1];$ • $\log x;$ • $\frac{x-1}{\log x}.$

Loewner's theorem

Theorem (Loewner 1934)

A real function $f:(0,\infty)\mapsto \mathbb{R}$ is operator monotone if and only if

$$f(x) = \alpha + \beta x + \int_0^\infty \frac{\lambda}{\lambda^2 + 1} - \frac{1}{\lambda + x} d\mu(\lambda),$$

where $\alpha \in \mathbb{R}$, $\beta \geq 0$ and μ is a unique non-negative measure on $[0, \infty)$ such that $\int_0^\infty \frac{1}{\lambda^2+1} d\mu(\lambda) < \infty$; if and only if it has an analytic continuation to the open upper complex half-plane \mathbb{H}^+ , mapping \mathbb{H}^+ to \mathbb{H}^+ .

Many different proofs of Loewner's theorem exist:

Bendat-Sherman '55, Hansen '13, Hansen-Pedersen '82, Korányi-Nagy '58, Sparr '90, Wigner-von Neumann '54, ...

Free and matrix convex sets

 \mathcal{A} a Banach space, $I_{\mathcal{A}}: \mathcal{A} \mapsto \mathcal{A}$ denote the identity map.

Definition (Free set and matrix convex set)

A collection (D(E)) of sets of operators $D(E) \subseteq \mathcal{A} \otimes \mathcal{B}(E)$ for each Hilbert space *E* is a *free set* whenever for all Hilbert spaces *E*, *K* we have the following:

(1) $(I_{\mathcal{A}} \otimes U^*)D(E)(I_{\mathcal{A}} \otimes U) \subseteq D(K)$ for all unitary $U: K \mapsto E$. (2) $D(E) \oplus D(K) \subseteq D(E \oplus K)$.

If additionally (1) holds for any linear isometry $U: K \mapsto E$, then (D(E)) is a matrix convex set.

Sometimes the collection (D(E)) will be restricted to the case $\dim(E) < \infty$. In that case, for all other involved Hilbert spaces K we assume $\dim(K) < \infty$ as well.

Free functions

Non-commutative polynomials of k operator variables suggest:

Definition (Free function)

Let \mathcal{L} be a fixed Hilbert space. A collection of functions $F : D(E) \mapsto \mathcal{B}(\mathcal{L} \otimes E)$ indexed by E for a free set $D(E) \subseteq \mathcal{A} \otimes \mathcal{B}(E)$ defined for all Hilbert spaces E, K is called a *free function* whenever for all $A \in D(E)$ and $B \in D(K)$, we have (1) unitary invariance, that is

$$F((I_{\mathcal{A}} \otimes U^{*})A(I_{\mathcal{A}} \otimes U)) = (I_{\mathcal{L}} \otimes U^{*})F(A)(I_{\mathcal{L}} \otimes U)$$

holds for all unitaries $U: E \mapsto K$;

(2) direct sum invariance, that is

$$F(A \oplus B) = F(A) \oplus F(B).$$

Operator monotone, concave functions

Definition (Operator monotonicity)

An free function $F : D(E) \mapsto \mathcal{B}(E)$ is operator monotone if for all $X, Y \in D(E)$ s.t. $X \leq Y$, we have

 $F(X) \leq F(Y).$

If this property is verified only (hence up to) $\dim(E) = n$, then F is *n*-monotone. Example: Karcher mean, ALM, BMP, etc.

Definition (Operator concavity & convexity)

A free function $F : D(E) \mapsto \mathcal{B}(E)$ is operator concave if for all $X, Y \in D(E)$ and $\lambda \in [0, 1]$, we have

$$(1-\lambda)F(X) + \lambda F(Y) \le F((1-\lambda)X + \lambda Y)$$

Similarly we define *n*-concavity. Note: convexity of D(E) is needed.

Operator monotone, concave functions

Recent multivariable results

- For an operator convex free function F : S^k → S that is rational - hence already free analytic and defined for general tuples of operators by virtue of non-commutative power series expansion - Helton, McCullogh and Vinnikov in 2006, JFA proved a representation formula, that is superficially similar to our formula that we will obtain here later in full generality.
- For a real valued continuously differentiable locally monotone function f : ℝ^k → ℝ Agler, McCarthy and Young in 2012, Ann. Math. proved a representation formula valid for pairwise commuting tuples of operators. Using the formula they obtained the analytic continuation of the restricted f to (H⁺)^k mapping (H⁺)^k to H⁺.

Operator monotone, concave functions

Recent multivariable results

- In JFA 2017, Pascoe and Tully-Doyle proved that a free function *F* : S^k → S that is free analytic, i.e. has a non-commutative power series expansion, thus already defined for general tuples of operators, is operator monotone if and only if it maps the upper operator poly-halfspace Π(*E*)^k to Π(*E*) for all finite dimensional *E*, where Π(*E*) := {*X* ∈ B(*E*) : X−X^{*}/2i > 0}.
- Recently in LAA 2018, Pascoe provided an alternative argument using the Agler-McCarthy-Young theorem leading to analytic continuation, which has been relaxed in 2019 by Pascoe and Tully-Doyle using the original Loewner theorem.

Note: matrix convexity of (D(E)) is crucial in the above results, except in Agler-McCarthy-Young.

Motivation of non-matrix convex domains through means In 2012 P-Lim introduced the matrix power means as non-commutative operator monotone lifts of the power means

$$P_p(\omega; A) := \left(\sum_{i=1}^k w_i A_i^p\right)^{1/p}$$

of positive definite commuting k-tuples $A = (A_1, \ldots, A_k)$, a probability vector ω and $p \in [-1, 1]$. The idea is to consider the unique positive definite solution $X =: P_p(\omega; A)$ of

$$\sum_{i=1}^k w_i X \#_p A_i = X.$$

 $P_p(\omega; \cdot)$ is operator monotone and as $p \to 0$, it converges to the multivariable geometric (Karcher) mean $\Lambda(\omega; \cdot)$.

A characterization of concavity

Proposition (P 2020)

Let (D(E)) with $D(E) \subseteq A \otimes B(E)$ denote a self-adjoint matrix convex set and let $F : D(E) \mapsto B(E)$ be a free function. Then F is operator concave if and only if for each isometry $W : E \mapsto K$ and $X \in D(K)$ we have

$$F((I_{\mathcal{A}}\otimes W^*)X(I_{\mathcal{A}}\otimes W))\geq W^*F(X)W.$$

Corollary (P 2020)

Under the above assumptions if also $0 \in D(\mathbb{C})$ and $F(0) \ge 0$, then the equivalence remains true with contractions $W : E \mapsto K$.

Given a disjoint union of sets $(C(E) \subseteq A \otimes B(E))$ for each Hilbert space *E* closed under direct sums, its matrix convex hull is given as

$$\operatorname{co}^{\mathrm{mat}} \mathcal{C}(\mathcal{E}) := igcup_{\mathcal{K}} \{ \mathcal{V}^* X \mathcal{V} : X \in \mathcal{C}(\mathcal{K}), \mathcal{V} : \mathcal{E} \mapsto \mathcal{K} \text{ an isometry} \}.$$

If $0 \in C(\mathbb{C})$ then we also have

$$\operatorname{co}^{\mathrm{mat}} \mathcal{C}(\mathcal{E}) = \bigcup_{\mathcal{K}} \{ V^* X V : X \in \mathcal{C}(\mathcal{K}), V : \mathcal{E} \mapsto \mathcal{K}, \|V\| \leq 1 \}.$$

Given a collection of sets $(D(E) \subseteq A \otimes B(E))$ closed under direct sums and a collection of functions $F : D(E) \mapsto B(E)$ preserving direct sums, we consider its hypograph

$$\operatorname{hypo}(F) := (\operatorname{hypo}(F)(E)) := (\{(Y, X) \in \mathcal{B}(E) \times D(E) : Y \leq f(X)\}).$$

A characterization of partial concavity

Proposition (P 2020)

Let a collection of self-adjoint sets $(D(E) \subseteq A \otimes B(E))$ closed under direct sums and a collection of functions $F : D(E) \mapsto B(E)$ preserving direct sums be given. Then for each isometry $W : E \mapsto K$ and $X \in D(K)$ such that $(I_A \otimes W^*)X(I_A \otimes W) \in D(E)$ we have that

$$F\left((I_{\mathcal{A}}\otimes W^{*})X(I_{\mathcal{A}}\otimes W)\right)\geq W^{*}F(X)W,$$

if and only if for each $(Y, X) \in co^{mat}(hypo(F))(E)$ with $X \in D(E)$ we have that $Y \leq F(X)$. Moreover if $0 \in D(\mathbb{C})$ and $F(0) \geq 0$ then the statement holds with contractions $W : E \mapsto K$.

Supporting pencils of hypographs

Proposition (P 2020)

Let $(D(E)) \ni 0$ and F be as before with $F|_D > 0$. Assume that $\operatorname{co}^{\mathrm{mat}}(D)(E)$ has nonempty interior for each E. Let N be a Hilbert space. Then for each interior point $A \in D(N)$ and each unit vector $v \in N$ there exists a completely bounded affine linear map $L_{F,A,v} : (\mathcal{B}(E), \mathcal{A} \otimes \mathcal{B}(E)) \mapsto \mathcal{B}(N)^* \otimes \mathcal{B}(E)$ given as

$$L_{F,\mathcal{A},v}(Y,X) := T(F,\mathcal{A},v) \otimes I_E - vv^* \otimes Y + \Lambda_{F,\mathcal{A},v}(X),$$

where $0 \leq T(F, A, v) \in \mathcal{B}(N)^*$ and $\Lambda_{F,A,v} : \mathcal{A} \mapsto \mathcal{B}(N)^*$ is a self-adjoint completely bounded linear map, such that

(a)
$$T(F, A, v)(I_N) = v^*F(A)v - \Lambda_{F,A,v}(A)$$
 and there exists $\epsilon > 0$
such that $(1 + \epsilon)A \in \operatorname{co}^{\mathrm{mat}}(D)(N)$ and
 $-\Lambda_{F,A,v}(A) \leq \frac{v^*F(A)v - v^*F((1+\epsilon)A)v}{\epsilon};$

dense set $E_0 \in \{x \in E : \|x\| = 1\}$ define the auxiliary vector space

$$\mathcal{H}_{E,0} := \bigoplus_{(X,v) \in (D(E), E_0)} E$$

and its completion \mathcal{H}_E with respect to the usual inherited direct sum inner product. We denote by $I_{(X,v)} \in \mathcal{B}(\mathcal{H}_E, E)$ the isometry that equals to $I_E - vv^*$ on the (X, v) slot and 0 elsewhere.

A representation formula

Corollary (P 2020)

Let $(D(E)) \ni 0$ and F be as above with $F|_D > 0$. Fix a Hilbert space E and an $\eta > 0$. Assume that $co^{mat}(D)(E)$ has nonempty interior for E. Then there exists a vector $e \in \mathcal{H}_E$ with ||e|| = 1, a completely bounded affine map $L_F : \mathcal{A} \otimes \mathcal{B}(E) \mapsto \mathcal{B}(\mathcal{H}_E)^* \otimes \mathcal{B}(E)$ given as

$$L_F(X) := T_F \otimes I_E + \Lambda_F(X),$$

where $0 \leq T_F \in \mathcal{B}(\mathcal{H}_E)^*$ and $\Lambda_F : \mathcal{A} \mapsto \mathcal{B}(\mathcal{H}_E)^*$ is self-adjoint completely absolutely continuous with respect to T_F , such that (a) For all $X \in \operatorname{co}^{\mathrm{mat}}(D)(E)$ we have $L_F(X) \geq 0$; (b) For all $(1+\eta)X \in D(E)$ in the interior of $\operatorname{co}^{\mathrm{mat}}(D)(E)$, $W \in \overline{\mathcal{B}}(\mathcal{H}_E, E)_{T_F}$ and $v \in E$ we have

$$\langle W, L_F(X)(I_{(X,v)} + ve^*) \rangle_{T_F} = e^* W^* F(X) v$$

Let $Z \ge 0$ and S a subspace. Let $Z = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$ with $Z_{11}: S \mapsto S, Z_{21}: S \mapsto S^{\perp}$. Then $\operatorname{ran}(Z_{21}) \subset \operatorname{ran}(Z_{22})^{1/2}$ and $\exists C: S \mapsto S^{\perp}$ such that $Z_{21} = (Z_{22})^{1/2}C$ and $Z = \begin{bmatrix} Z_{11} - C^*C & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} C^* & 0 \\ (Z_{22})^{1/2} & 0 \end{bmatrix} \begin{bmatrix} C & (Z_{22})^{1/2} \\ 0 & 0 \end{bmatrix}$. Then $S_S(Z) := Z_{11} - C^*C$ is maximal among $X: S \mapsto S, X \le Z$.

Theorem (P 2020) Theorem (P 2020)

Let $(D(E)) \ni 0$ and F be as above with $F|_D > 0$. Fix E. Assume that $co^{mat}(D)(E)$ has nonempty interior for E. Then for each $X \in D(E)$ in the interior of $co^{mat}(D)(E)$ we have

$$F(X) = (e \otimes I_E) \mathcal{S}_{e^* \otimes E}(L_F(X))(e^* \otimes I_E).$$

Moreover the RHS is well defined for each interior point $X \in co^{mat}(D)(E)$.

Theorem (P 2020)

Let \mathcal{H} a Hilbert space and $e \in \mathcal{H}$ with ||e|| = 1 be fixed. Let a completely bounded affine map $L : \mathcal{A} \otimes \mathcal{B}(E) \mapsto \mathcal{B}(\mathcal{H})^* \otimes \mathcal{B}(E)$ be given as

$$L(X) := T \otimes I_E + \Lambda(X),$$

where $0 \leq T \in \mathcal{B}(\mathcal{H})^*$ and $\Lambda : \mathcal{A} \mapsto \mathcal{B}(\mathcal{H})^*$ is a self-adjoint completely bounded linear map that is completely absolutely continuous with respect to T. Then the function

$$F(X) := (e \otimes I_E) \mathcal{S}_{e^* \otimes E}(L(X))(e^* \otimes I_E)$$

is well defined and analytic for each $X \in \{Y \in \mathcal{A} \otimes \mathcal{B}(E) : L(\Re(Y)) > 0\}$ and satisfies the assumptions of the above with $D(E) := \{Y \in \mathcal{A} \otimes \mathcal{B}(E) : L(Y) \ge 0\}.$

Free lifting of globally operator monotone functions Let $\mathbb{CP}(E)^k$ denote the set of pairwise commuting k-tuples of positive operators on E. A real function $f : (0, \infty)^k \mapsto (0, \infty)$ has a natural functional calculus on $\mathbb{CP}(E)^k$ for dim $(E) < \infty$ defined as $f(X) := U^* f(\Lambda) U$ where $X = U^* \Lambda U$ denotes the joint spectral decomposition of $X \in \mathbb{CP}(E)^k$ and $f(\Lambda) := \bigoplus_{i=1}^k f(\{\Lambda_1\}_{ii}, \dots, \{\Lambda_k\}_{ii})$. We also have $\operatorname{co}^{\operatorname{mat}} \mathbb{CP}^k(E) = \mathbb{P}^k(E)$ for each dim $(E) < \infty$.

Definition

A real function $f : \mathbb{P}(\mathbb{C})^k \mapsto \mathbb{P}(\mathbb{C})$ is said to be *(globally) operator* monotone, if for any $X \leq Y \in \mathbb{CP}(E)^k$, dim $(E) < +\infty$ we have $f(X) \leq f(Y)$.

Problem

Is every real globally operator monotone function admit an analytic continuation to $\mathbb{P}(E)^k$ or a global formula?

Proposition (P 2020)

Let $f : \mathbb{P}(\mathbb{C})^k \mapsto \mathbb{P}(\mathbb{C})$ be a (globally) operator monotone function. Then for any isometry $W : E \mapsto K$ between finite dimensional Hilbert spaces E, K and any $X \in \mathbb{CP}(K)^k$ such that $W^*XW \in \mathbb{CP}(E)^k$ we have

 $W^*f(X)W \leq f(W^*XW).$

In particular f is concave and continuous as a real function.

Theorem (P 2020)

Let $f : \mathbb{P}(\mathbb{C})^k \mapsto \mathbb{P}(\mathbb{C})$ be a real function. Then f is (globally) operator monotone if and only if for each $(Y, X) \in \operatorname{co}^{\mathrm{mat}}(\operatorname{hypo}(f)(E))$ with $\dim(E) < +\infty$ and $X \in \mathbb{CP}(E)^k$, we have that $Y \leq f(X)$.

Thus, we can follow the earlier arguments, obtaining analytic shorted operator based formulas!

Operator means of probability measures

Let $\mathcal{P}(\mathbb{P}(E))$ denote the set of fully supported Borel probability measures on the complete metric space $(\mathbb{P}(E), d_{\infty})$ where E is a Hilbert space and $d_{\infty}(A, B) = ||\log(A^{-1/2}BA^{-1/2})||$ denotes the Thompson metric. Let $\mathcal{P}^{\infty}(\mathbb{P}(E)) \subset \mathcal{P}(\mathbb{P}(E))$ denote the subset of probability measures with bounded support. For a $\mu \in \mathcal{P}(\mathbb{P}(E))$ the support $\operatorname{supp}(\mu)$ is a separable closed subset of $\mathbb{P}(E)$ and it has full measure $\mu(\operatorname{supp}(\mu)) = 1$. A set $U \subseteq \mathbb{P}(E)$ is *upper* if $X \leq Y \in \mathbb{P}(E)$ and $X \in U$ imply that $Y \in U$.

Definition (Stochastic order)

For $\mu, \nu \in \mathcal{P}(\mathbb{P}(E))$ the stochastic partial order $\mu \leq \nu$ is defined by requiring $\mu(U) \leq \nu(U)$ for all closed upper sets $U \subseteq \mathbb{P}(E)$.

Idea: utilize the Skorokhod representation

Stochastic order of probability measures

Theorem (Strassen 1965)

Let $\mu, \nu \in \mathcal{P}^{\infty}(\mathbb{P}(E))$. Then the following are equivalent:

(i) $\mu \leq \nu$;

(ii) there exists $\xi_{\mu} : [0,1] \mapsto \operatorname{supp}(\mu)$ and $\xi_{\nu} : [0,1] \mapsto \operatorname{supp}(\nu)$ such that $\mu = (\xi_{\mu})_* \lambda$ and $\nu = (\xi_{\nu})_* \lambda$ with $\xi_{\mu}(t) \leq \xi_{\nu}(t)$ almost surely for all $t \in [0,1]$.

Proposition (P 2020)

The collection of sets $(\mathcal{P}^{\infty}(\mathbb{P}(E)))$ indexed by E is a self-adjoint matrix convex set. In particular $\mathcal{P}^{\infty}(\mathbb{P}(E))$ embeds into $L^{\infty}([0,1],\lambda)_+ \otimes \mathbb{P}(E)$, the strictly positive cone of the projective tensor product $L^{\infty}([0,1],\lambda) \otimes \mathcal{B}(E)$.

Nuclearity ensures that all C^* -cross norms on $(L^{\infty}([0,1],\lambda)^+\otimes \mathbb{P}(E))$ are equivalent.

Operator means of probability measures

Definition (Direct sums of probability measures) For $\mu \in \mathcal{P}^{\infty}(\mathbb{P}(E))$, $\nu \in \mathcal{P}^{\infty}(\mathbb{P}(K))$, let $\Gamma(\mu, \nu) \subseteq \mathcal{P}^{\infty}(\mathbb{P}(E \oplus K))$ denote the set of couplings of μ, ν , that is $\gamma \in \Gamma(\mu, \nu)$ if $\gamma(A \times \mathbb{P}(K)) = \mu(A)$ and $\gamma(\mathbb{P}(E) \times B) = \nu(B)$. Then $\mu \oplus \nu$ is defined to be the set $\Gamma(\mu,\nu)$. Thus in general, the direct sum of probability measures is no longer uniquely determined. Notice that $\Gamma(\mu, \nu)$ is nonempty, since $\mu \times \nu \in \Gamma(\mu, \nu)$. Definition (Operator mean of discrete probability measures) For each $0 < n \in \mathbb{N}$ and E let $F_n : \mathbb{P}(E)^n \mapsto \mathbb{P}(E)$ be an operator monotone free function. Then $F = \{F_n\}$ is an operator mean if

1) For a permutation
$$\sigma \in S_n$$
,
 $F_n(X_1, ..., X_n) = F_n(X_{\sigma(1)}, ..., X_{\sigma(n)});$
2) For $0 < k \in \mathbb{N}$,
 $F_{nk}(\underbrace{X_1, ..., X_1}_{k \text{ times}}, ..., \underbrace{X_n, ..., X_n}_{k \text{ times}}) = F_n(X_1, ..., X_n).$

Operator means of probability measures

Proposition (P 2020)

An operator mean $F_n : \mathbb{P}(E)^n \mapsto \mathbb{P}(E)$ preserves direct sums of discrete probability measures with rational weights.

In order to study operator means of general probability measures $F : \mathcal{P}^{\infty}(\mathbb{P}(E)) \mapsto \mathbb{P}(E)$, we consider first free functions of random variables, that is $F : (L^1([0,1],\lambda)^+ \otimes \mathbb{P}(E)) \mapsto \mathbb{P}(E)$. Let $S([0,1],\lambda)$ denote the set of simple functions on [0,1]. Then $S([0,1],\lambda)$ is norm-dense in $L^p([0,1],\lambda)$ for $1 \le p \le +\infty$ and the same is true for $S([0,1],\lambda)^+ \otimes \mathbb{P}(E)$ in $L^p([0,1],\lambda)^+ \otimes \mathbb{P}(E)$.

Theorem (P 2020)

Assume that $F : S([0,1], \lambda)^+ \otimes \mathbb{P}(E) \mapsto \mathbb{P}(E)$ is free operator concave function. Then for each $1 \le p \le +\infty$ there exists a unique $\hat{F}_p : L^p([0,1], \lambda)^+ \otimes \mathbb{P}(E) \mapsto \mathbb{P}(E)$ extending F.

Extension and representation theorems for operator means

Theorem (P 2020)

Assume that the sequence of functions $F_n : \mathbb{P}(E)^n \mapsto \mathbb{P}(E)$ for $0 < n \in \mathbb{N}$ is an operator mean of discrete probability measures. Then it uniquely extends into a stochastic order preserving function $\hat{F} : \mathcal{P}^{\infty}(\mathbb{P}(E)) \mapsto \mathbb{P}(E)$.

Corollary (P 2020)

Let $F : \mathcal{P}^{\infty}(\mathbb{P}(E)) \mapsto \mathbb{P}(E)$ be a stochastic order preserving free function. Then there exists an operator monotone free function $\hat{F} : L^{\infty}([0,1],\lambda)^+ \otimes \mathbb{P}(E) \mapsto \mathbb{P}(E)$ that represents F and $\hat{F}(X + I)$ is given by the shorted operator formula where $0 \leq \lambda \in (L^{\infty}([0,1],\lambda) \otimes \mathcal{B}(\mathcal{H}_E))^*$ and $I(t) := I_E$ for all $t \in [0,1]$.

Blecher's real operator monotonicity

For a free function $F : D(E) \mapsto \mathcal{B}(\mathcal{L} \otimes E)$ we define real operator monotonicity of F as: $A \leq_{\operatorname{Re}} B$ implies $F(A) \leq_{\operatorname{Re}} F(B)$, where $0 \leq_{\operatorname{Re}} X$ means $0 \leq \Re X = \frac{X+X^*}{2}$. Note: \leq_{Re} is just a preorder. Theorem (Gaál & P 2020)

Let the domain (D(E)) be open. Then F is real operator monotone if and only if

$$F(\Re X,\Im X) = G(\Re X) + iH(\Re X,\Im X)$$

where $H : \Re D(E) \times \Im D(E) \mapsto \mathbb{S}(E)$ is a free function and $G : \Re D(E) \mapsto \mathbb{S}(E)$ is an operator monotone free function. Assume further that for all invertible $S \in \mathcal{B}(E, K)$ (1') $F((S^{-1} \otimes I_{\mathcal{A}})A(S \otimes I_{\mathcal{A}})) = (I_{\mathcal{B}(\mathcal{L})} \otimes S^{-1})F(A)(I_{\mathcal{B}(\mathcal{L})} \otimes S).$ Note that: (1'), (2) + local boundedness is equivalent to that F is free holomorphic! Then: Theorem (Real monotone Loewner's theorem, Gaál & P 2020) Let $F : D(E) \mapsto \mathcal{B}(\mathcal{L} \otimes E)$ be a free holomorphic function. Then F is real operator monotone if and only if

$$F(X) = C \otimes I + \phi(X)$$

where $C \in \mathcal{B}(\mathcal{L})$ and $\phi : \mathcal{A} \mapsto \mathcal{B}(\mathcal{L})$ is completely positive linear. Corollary (Gaál & P 2020)

Given a free set (D(E)), let $F : D(E) \to \mathcal{B}(E)$ be a free holomorphic function where each $D(E) \subseteq \mathcal{B}(E)^k$ is open. Then F is real operator monotone if and only if

$$F(X) = a_0 \otimes I + \sum_{j=1}^k a_j \otimes X_j$$

where $a_j \in \mathbb{C}$, with $a_j \ge 0$ for $j \in \{1, \ldots, k\}$.

- M. Pálfia, Analytic lifts of operator concave functions, preprint (2020), arXiv:2009.12515.
- M. Pálfia, Loewner's theorem in several variables, to appear in 490:1 JMAA (2020), 124233.
- M. Gaál and M. Pálfia, A note on real operator monotone functions, to appear in IMRN (2020), 10.1093/imrn/rnaa150.
- J. Agler, J. E. McCarthy and N. Young, Operator monotone functions and Löwner functions of several variables, Ann. Math., 176:3 (2012), pp. 1783–1826.
- J.E. Pascoe and R. Tully-Doyle, Free Pick functions: Representations, asymptotic behavior and matrix monotonicity in several noncommuting variables, J. Funct. Anal. 273 (2017), pp. 283–328.

Thank you for your kind attention!